2023 Spring Graduate Colloquium Series: Davis Crater
Davis Crater
Ultra-compact attosecond X-ray free-electron lasers utilizing unique beams from plasma-based acceleration and an optical undulator
Xinlu Xu, Jiaxin Liu, Thamine Dalichaouch, Frank S. Tsung, et. al
Abstract
Accelerator-based X-ray free-electron lasers (XFELs) are the latest addition to the revolutionary tools of discovery for the 21st century. The two major components of an XFEL are an accelerator produced electron beam and a magnetic undulator which tend to be kilometer-scale long and expensive. Here, we present an ultra-compact scheme to produce 10s of attosecond X-ray pulses with several GW peak power utilizing a novel aspect of the FEL instability using a highly chirped, pre-bunched and ultra-bright electron beam from a plasma-based accelerator interacting with an optical undulator. The self-selection of electrons from the combination of a highly chirped and prebunched beam leads to the stable generation of attosecond X-ray pulses. Furthermore, two-color attosecond pulses with sub-femtosecond separation can be produced by adjusting the energy distribution of the electron beam so that multiple FEL resonances occur at different locations within the beam. Such a tunable coherent attosecond X-ray sources may open up a new area of attosecond science enabled by X-ray attosecond pump/probe techniques.